
1 Point estimation

1.1 Maximum Likelihood Estimators

The maximum likelihood method is the most popular way to estimate the parameter θ which specifies a probability
model. The maximum likelihood estimate is the value θ̂ which maximize the likelihood function. That is, the
maximum likelihood estimation chooses the model parameter θ̂ which is the most likely to generate the
observed data.

Definition 1.1. Let X1:n ∼ fθ, where θ ∈ Θ. Denote the likelihood function of θ by L(θ) = L (θ | X1:n) =
fθ (X1:n), and log-likelihood function by ℓ(θ) = logL(θ). The maximum likelihood estimator (MLE) of θ is

󰁥θ = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

ℓ(θ)

Here we briefly review three good properties of the maximum likelihood estimation:

Theorem Sketch of Proof

consistency (asymptotic correctness) positivity of Kullback-Leibler divergence

asymptotic normality: θ̂ ∼ N
󰀃
θ̄, 1

nI
−1

󰀄
central limit theorem for delta method

efficiency (minimum variance) Cauchy-Schwarz inequality

Table 1: Theorems for maximum likelihood estimation.

To study the theoretical properties of MLEs, we need the notations below.

Definition 1.2. . Let f and g be densities with support X. The Kullback-Leibler ( KL ) distance between
f and g is

KL(f | g) =
󰁝

x
f(x) log

f(x)

g(x)
dx = E

󰀕
log

f(X)

g(X)

󰀖

if we assume that X ∼ f

Remark 1.1. The definition is motivated by concepts from information theory and relative entropy.

• relative entropy measures the inefficiency or additional information required when using one
distribution (denoted Q ) to approximate or represent another distribution (denoted P ).

• The KL distance is the difference of entropy between true model and another model.

We can see that

• KL(f | g) ≥ 0 since

E

󰀕
log

f(X)

g(X)

󰀖
= E

󰀕
− log

g(X)

f(X)

󰀖
≥ − log E

󰀕
g(X)

f(X)

󰀖
= − log

󰁝

X

g(x)

f(x)
f(x)dx = 0

and the equality holds iff f = g.

• KL(f | f) = 0, and

• KL(f | g) ∕= KL(g | f) in general.

We consider well-specified and identifiable statistical models. Now define

󰁦M(θ) =
1

n

n󰁛

i=1

log
fθ (Xi)

fθ󰂏 (Xi)
and M(θ) = E󰂏

󰀝
log

fθ (X1)

fθ󰂏 (X1)

󰀞

Remark 1.2. Let M(θ) represent the negative KL divergence. Our objective is to find an estimator that
minimizes this divergence, i.e.,

θ󰂏 = argmax
θ∈Θ

M(θ).
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However, since M(θ) cannot be computed directly, we use an empirical estimate 󰁦M(θ) as a substitute.
Thus, we seek

󰁥θ = argmax
θ∈Θ

󰁦M(θ),

which is equivalent to the maximum likelihood estimator (MLE). Therefore, finding the MLE is equivalent
to identifying the estimator that minimizes the estimated KL divergence.

Definition 1.3. The statistical model F = {fθ : θ ∈ Θ} is said to be identifiable if

∀θ ∕= θ′, KL (fθ′ | fθ) > 0

Definition 1.4. Let f󰂏 be the data generating density. The model F = {fθ : θ ∈ Θ} is said to be well-
specified if

∀θ ∕= θ′, KL (fθ′ | fθ) > 0

1.1.1 Consistency

The first property is that, as the number of observations n becomes large, the estimate θ̂ converges to the true
value θ󰂏.

Theorem 1.1. Assume:

(Maximizer:) 󰁥θ = argmax
θ∈Θ

󰁦M(θ),

(Uniform LLN): sup
θ∈Θ

|󰁦M(θ)−M(θ)| pr−→ 0,

(Well-separation): ∀ε > 0, sup
θ:|θ−θ󰂏|>ε

M(θ) < M (θ󰂏) .

Then 󰁥θ pr−→ θ󰂏.

󱾣 Intuition: Since two functions 󰁦M(θ) and M(θ) are getting closer, the points of maximum should also

get closer which exactly means that θ̂ → θ0.

Proof. First, we examine the difference in the true Kullback-Leibler (KL) divergence between the true

parameter θ󰂏 and the maximum likelihood estimator (MLE) θ̂ :

0 ≤ M(θ󰂏)−M(θ̂) =
󰁱
M(θ󰂏)− 󰁦M(θ̂)

󰁲
+

󰁱
󰁦M(θ̂)−M(θ̂)

󰁲
Add and subtract 󰁦M(θ̂)

≤
󰁱
M(θ󰂏)− 󰁦M(θ󰂏)

󰁲
+

󰁱
󰁦M(θ̂)−M(θ̂)

󰁲
θ̂ maximizes 󰁦M(θ)

≤ 2 sup
θ∈Θ

󰀏󰀏󰀏󰁦M(θ)−M(θ)
󰀏󰀏󰀏 pr−→ 0. Uniform convergence

indicating that the difference converges to zero in probability. Given the strong identifiability of θ󰂏 , there
exists a δ > 0 such that:

|θ − θ󰂏| ≥ ε ⇒ M(θ) < M (θ󰂏)− δ

Note that if A ⇒ B, then P(A) ≤ P(B). So, putting θ = 󰁥θ , we have

P
󰀓󰀏󰀏󰀏󰁥θ − θ󰂏

󰀏󰀏󰀏 ≥ ε
󰀔
≤ P

󰁱
M(󰁥θ) < M (θ󰂏)− δ

󰁲
→ 0

There are many different versions of conditions for proving consistency of MLE. Many of them rely heavily
on the uniform LLN. We provide an alternative set of conditions.
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Theorem 1.2. Let {fθ : θ ∈ Θ} be the model, and X1, X2, . . .
IID∼ fθ󰂏 . Assume

1. (Compactness.) Θ is compact;

2. (Uniqueness of maximizer.) θ󰂏 is the unique maximizer of θ 󰀁→ M(θ);

3. (Continuous.) M(θ) is continuous in θ;

4. (Uniform LLN.) 󰁦M(θ) converges uniformly in probability.

Then 󰁥θ pr−→ θ󰂏.

Proof. For 󰂃 > 0, define the 󰂃-neighborhood around θ󰂏 as:

Θ(󰂃) = {θ : 󰀂θ − θ󰂏󰀂 < 󰂃}
We aim to show that

Pθ0

󰁫
θ̂ ∈ Θ(󰂃)

󰁬
→ 1

Since Θ(󰂃) is an open set, we know that Θ ∩Θ(󰂃)C is a compact set. Since M(θ) is a continuous function,
then supθ∈Θ∩Θ(󰂃)C {M(θ)} is achieved for a θ in this compact set. Denote this value by θ0. Since θ󰂏 is the

unique max, let M(θ󰂏)−M(θ0) = δ > 0. For any θ, we distinguish between two cases.

• θ ∈ Θ ∩Θ(󰂃)C .

Let An be the event that supθ∈Θ∩Θ(󰂃)C

󰀏󰀏󰀏M(θ)− 󰁦M(θ)
󰀏󰀏󰀏 < δ/2. Then

An ⇒ 󰁦M (θ) < M(θ) + δ/2

≤ M (θ0) + δ/2

= M (θ󰂏)− δ + δ/2

= M (θ󰂏)− δ/2

• θ ∈ Θ(󰂃).

Let Bn be the event that supΘ(󰂃)

󰀏󰀏󰀏M(θ)− 󰁦M(θ)
󰀏󰀏󰀏 < δ/2. Then

Bn ⇒ 󰁦M (θ) > M(θ)− δ/2 for all θ

⇒ 󰁦M (θ) > M (θ󰂏)− δ/2

We conclude that if both An and Bn hold then θ̂ ∈ Θ(󰂃). By the proof of theorem 1.1, we know that as

long as 󰁦M(θ) converges uniformly in probability, M (θ󰂏)−M(󰁥θ) pr→ M(θ). Comparing the two cases above

we have θ̂ ∈ Θ(󰂃).

A key element of above two proof is that converges uniformly in probability. But it is difficult to prove.

Lemma 1.3. Let {fθ : θ ∈ Θ} be the model, and X1, X2, . . .
IID∼ fθ󰂏 . Θ is compact, log f(x; θ) is continuous

in θ for all θ ∈ Θ and all x ∈ X, and if there exists a function d(x) such that | log f(x; θ)| ≤ d(x) for all
θ ∈ Θ and x ∈ X, and Eθ0 [d(X)] < ∞, then

• M(θ) is continuous in θ;

• supθ∈Θ

󰀏󰀏󰀏󰁦M(θ)−M(θ)
󰀏󰀏󰀏 pr→ 0

Proof. To establish continuity, we need to demonstrate that if θk → θ , then M(θk) → M(θ) . Specifically,
we need to show that

M(θk) = E

󰀕
log

󰀕
fθk
fθ󰂏

󰀖󰀖
→ M(θ) = E

󰀕
log

󰀕
fθ
fθ󰂏

󰀖󰀖

By the continuity of fθ , we know that log fθk → log fθ . Furthermore, since log fθ ≤ d(X) and Ed(X) < ∞,
we can apply the dominated convergence theorem, which ensures the desired convergence holds. Since Θ
is compact, we also know that M(θ) is uniformly continuous.
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Regarding uniform convergence, we need to establish that

sup
θ∈Θ

󰀏󰀏󰀏󰁦M(θ)−M(θ)
󰀏󰀏󰀏 pr→ 0

We have already shown that M(θ) is uniformly continuous. Now, we consider the properties of 󰁦M(θ). Since
󰁦M(θ) is the average of the log-likelihood, its behavior is closely related to the properties of the likelihood
function fθ(x). As fθ(x) is continuous in Θ and Θ is compact, it follows that log fθ(x) is also uniformly
continuous. Thus, for any 󰂃 > 0, there exists δ(󰂃) such that if 󰀂θ1 − θ2󰀂 < δ, we have

sup
󰀂θ1−θ2󰀂<δ

|log fθ1(x)− log fθ2(x)| < 󰂃

which implies that
∆(x, δ) = sup

󰀂θ1−θ2󰀂<δ
|log fθ1(x)− log fθ2(x)| → 0

Therefore, if 󰀂θ1 − θ2󰀂 < δ , for all x ∈ X , we obtain

󰀏󰀏󰀏󰁦M(θ1)− 󰁦M(θ2)
󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

(log fθ1(xi)− log fθ2(xi))

󰀏󰀏󰀏󰀏󰀏

≤ 1

n

n󰁛

i=1

|log fθ1(x)− log fθ2(x)|

≤ 1

n

n󰁛

i=1

∆(x, δ) → 0

So 󰁦M(θ) is also uniform continuous.
Now we can maginify the target inequality and use the properties of uniformly continuous.
To begin, we first cut off our set Θ by considering an open ball of radius δ around each θ ∈ Θ, i.e.,
B(θ, δ) = {θ̃ : 󰀂θ̃ − θ󰀂 < δ}. The union of these balls forms an open cover of Θ. By compactness, we
can find a finite subcover, denoted as {B(θj , δ), j = 1, . . . , J}. For each θ ∈ Θ, there exists a θj such that
θ ∈ B(θj , δ). Therefore, for any θ ∈ Θ, we have

|󰁦M(θ)−M(θ)| ≤ |󰁦M(θ)− 󰁦M(θj)|+ |󰁦M(θj)−M(θj)|+ |M(θj)−M(θ)|

Since 󰁦M(θ) andM(θ) are uniformly continuous, we can choose δ small enough such that both |󰁦M(θ)−󰁦M(θj)|
and |M(θj)−M(θ)| can be bounded by 󰂃/3.
So

|󰁦M(θ)−M(θ)| ≤ 󰂃/3 + max
j=1,2,··· ,J

|󰁦M(θj)−M(θj)|+ 󰂃/3

which implies that

sup
θ∈Θ

|󰁦M(θ)−M(θ)| ≤ 2󰂃/3 + max
j=1,2,··· ,J

|󰁦M(θj)−M(θj)|

Further, we have

sup
θ∈Θ

|󰁦M(θ)−M(θ)| > 󰂃 =⇒ max
j=1,2,··· ,J

|󰁦M(θj)−M(θj)| > 󰂃/3

We now show that

P

󰀕
max

j=1,2,··· ,J
|󰁦M(θj)−M(θj)| > 󰂃/3

󰀖
pr→ 0.

It is easy since

P

󰀕
max

j=1,2,··· ,J
|󰁦M(θj)−M(θj)| > 󰂃/3

󰀖
=P

󰀳

󰁃
󰁞

j=1,2,··· ,J

󰁱
|󰁦M(θj)−M(θj)| > 󰂃/3

󰁲
󰀴

󰁄

≤
󰁛

j=1,2,··· ,J
P
󰀓󰁱

|󰁦M(θj)−M(θj)| > 󰂃/3
󰁲󰀔
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then by WLLN, we know that for each θj and for any 󰂃 > 0, η > 0 there exists N(󰂃, η) so that for all
n > Nj(󰂃, η)

P
󰀓󰁱

|󰁦M(θj)−M(θj)| > 󰂃/3
󰁲󰀔

< η/J

Let N = maxNj we have that

󰁛

j=1,2,··· ,J
P
󰀓󰁱

|󰁦M(θj)−M(θj)| > 󰂃/3
󰁲󰀔

< η

Finally,

P

󰀕
sup
θ∈Θ

󰀏󰀏󰀏󰁦M(θ)−M(θ)
󰀏󰀏󰀏 > 󰂃

󰀖
≤ P

󰀕
max

j=1,2,··· ,J
|󰁦M(θj)−M(θj)| > 󰂃/3

󰀖
pr→ 0

which completes the proof.

5


